Monthly Archives: December 2016

seal @ ICSE 2017

We are very happy to announce that our research group got two papers at ICSE 2017 in Buenos Aires, Argentina.

The first accepted paper is entitled “Analyzing APIs Documentation and Code to Detect Directive Defects” and was written by Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella and Harald Gall.

Abstract: “Application Programming Interface (API) documents represent one of the most important references for API users. However, it is frequently reported that the documentation is inconsistent with the source code and deviates from the API itself. Such inconsistencies in the documents inevitably confuse the API users hampering considerably their API comprehension and the quality of software built from such APIs.


In this paper, we propose an automated approach to detect defects of API documents by leveraging techniques from program comprehension and natural language processing. Particularly, we focus on the directives of the API documents which are related to parameter constraints and exception throwing declarations. A first-order logic based constraint solver is employed to detect such defects based on the obtained analysis results. We evaluate our approach on parts of well documented JDK 1.8 APIs. Experiment results show that, out of around 2000 API usage constraints, our approach can detect 1146 defective document directives, with a precision rate of 83.1%, and a recall rate of 81.2%, which demonstrates its practical feasibility.”

A preprint of the paper will be available soon.

The second paper is entitled “Recommending and Localizing Code Changes for Mobile Apps based on User Reviews” and was written in collaboration with the University of Salerno. The authors of the paper are: Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Harald Gall, Filomena Ferrucci and Andrea De Lucia.

Abstract: “Researchers have proposed several approaches to extract information from user reviews useful for maintaining and evolving mobile apps. However, most of them just perform automatic classification of user reviews according to specific keywords (e.g., bugs, features). Moreover, they do not provide any support for linking user feedback to the source code components to be changed, thus requiring a manual, time-consuming, and error-prone task.

In this paper, we introduce ChangeAdvisor, a novel approach that analyzes the structure, semantics, and sentiments of sentences contained in user reviews to extract useful (user) feedback from maintenance perspectives and recommend to developers changes to software artifacts. It relies on natural language processing and clustering algorithms to group user reviews around similar user needs and suggestions for change. Then, it involves textual based heuristics to determine the code artifacts that need to be maintained according to the recommended software changes. The quantitative and qualitative studies carried out on 44683 user reviews of 10 open source mobile apps and their original developers showed a high accuracy of ChangeAdvisor in (i) clustering similar user change requests and (iii) identifying the code components impacted by the suggested changes.

Moreover, the obtained results show that ChangeAdvisor is more accurate than a baseline approach for linking user feedback clusters to the source code in terms of both precision +47%) and recall (+38%).”

Also in this case a preprint of the paper will be available soon.